CARILLONS OF THE WORLD

Privately published on behalf of the
World Carillon Federation and its member societies

by

Carl Scott Zimmerman

Chairman of the former
Special Committee on Tower and Carillon Statistics, The Guild of Carillonneurs in North America

Online Edition (a set of Portable Document Format files) Copyright March 2020 by Carl Scott Zimmerman

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form other than its original, or by any means (electronic, photographic, xerographic, recording or otherwise) which could have the effect of enabling two or more people to have access to that part simultaneously and independently, without the prior permission of the copyright holder (address at end of next column), except as stated below and in the Terms of Use opposite. In other words, regardless of its actual form, this publication must be treated like a printed paper book, which can be used by only one person at a time.

Notwithstanding the above, the following special permissions are granted:
(1) to reviewers, permission to quote individual items of information for use in reviews provided that in each case mention is made of the World Carillon Federation, and reference is made to this publication;
(2) to private individuals, permission to copy by hand any number of individual items of information for personal use;
(3) to any individual who visits the TowerBells Website, permission to utilize any component PDF file resident there as specified in the Terms of Use opposite;
(4) general permission to make an unlimited number of print copies of the order form and survey forms for the purpose of communicating with the author or encouraging others to do so.

TERMS OF USE

The PDF files which constitute the online edition of this publication are subject to the following terms of use:
(1) Only the copy of each file which is resident on the TowerBells Website is sharable. That copy is subject to revision at any time without prior notice to anyone.
(2) A visitor to the TowerBells Website may download any of the available PDF files to that individual's personal computer via a Web browser solely for viewing and optionally for printing at most one copy of each page.
(3) A file copy so downloaded may not be further reproduced or distributed in any manner, except as incidental to the course of regularly scheduled backups of the disk on which it temporarily resides. In particular, it may not be subject to file sharing over a network.
(4) A print copy so made may not be further reproduced.

CONTENTS

The main purpose of this publication is to identify and describe all of the traditional carillons in the world. But it also covers electrified carillons, chimes, rings, zvons \& other instruments or collections of 8 or more conventional or tubular tower bells (even if not in a tower), and other significant tower bells.

The complete publication (online version) consists of, and the Terms of Use apply to, the following PDF files.
itite \& Contents (this page, reproduced in each file)
Introduction - a complete guide to the display and
interpretation of site, summary and other information.
North America (carillons, traditional and non-traditional)
North America (chimes, chimolas, rings and zvons)
(North America $=$ The U.S.A., Canada and Mexico)
Central and South America
Africa and the Middle East
Asia and the Pacific Rim
Belgium
British Isles (including Eire)
Denmark and its dependencies
France
Germany (East and West united)
Italy
The Netherlands
Europe and the North Atlantic (remaining countries)
Order form for obtaining standard hardcopy
Survey forms for carillons, chimes and towers

Copyright holder:	Carl Scott Zimmerman
	1424 Wilton Lane
	Saint Louis, MO 63122-6943
	U. S. A.
Tel. $+1-(314) 821-8437$	Email: Csz_stl@swbell.net

INTRODUCTION

Each PDF file which is part of this publication contains two types of information about tower bell sites. (See Glossary on next page.) The first type is plain text, which identifies the location of each site, people associated with it, etc. The second type is technical data about the bells and the installation at each standard site. (A third type, summaries which reflect the overall characteristics of the standard sites in an area, is found only in original hardcopy or on Webpages.) Every major geographic area contains one section of each type.

Plain text information is arranged under headings beginning with "MASTER INFORMATION LISTING" (referenced as "MIL"). Where it pertains to a standard site, it is laid out according to the Site Text Pattern described on the third following page. Cross references and other non-standard material may appear in various places. Each MIL entry, of whatever type, is set off with blank lines before and after it, and has no blank lines within it.

At the very end of each MIL section there is usually a subsection headed "Other sites of interest". These include museums, rings of 5 or 6 bells, large or historic bells, and other such places not otherwise qualified for entry in the main sections. "Great bells" are listed with the heaviest first, and include bells over about 4 tons in weight, or of pitch G\# or below. Heavy bells contained in standard sites appear here also.

Technical data for every standard site is presented in a very compact tabular form under headings beginning with "CONDENSED INFORMATION LISTING" (referenced as "CIL") according to the Code Interpretation section which follows the Site Text Pattern page. There is no "incidental" material in the CIL. However, two blank lines around a row of dashes are inserted to provide a visual break wherever there is a break in alphabetic order that is due to subdivision of the geographic area (This does NOT appear if consecutive subdivisions happen to form a continuous alphabetic sequence.)

Most geographic areas are further subdivided based on major classes of instruments; a few are also subdivided geographically. Such subdivision is always described at the beginning of the MIL for the area. All of the standard sites in a geographic area appear in exactly the same order in the MIL and CIL sections for that area.

NOTE: Data for standard sites in the Americas appear essentially as published in a series of six articles in the "Bulletin" of the G.C.N.A. with subsequent changes which could have been published in another such article, were formerly published on the G.C.N.A. Website, and now are published on the TowerBells Website. However, those articles and this publication do not include the non-standard sites or the summaries which appear in hardcopy versions of these PDF files. (The TowerBells Website does contain the lists of great bells, in a different format.)

DISCLAIMER:

The information presented in this book has been compiled from many sources. While some sites have been personally visited by the author, this has not been possible for all sites.
There are obvious gaps in many data entries worldwide, and the validity of others is questionable. This publication can be no more accurate than the sources on which it is based. Therefore consider carefully the year of the source in determining the validity of any entry.

If you find any errors or omissions in this publication please notify the author, so that they can be corrected in future editions. In return, you will receive a custom extract from the database, showing how your information has been entered, and also reflecting changes received from other contributors for the same area, section or sub-section.

Suggestions for enhancements to the display format are also welcome.

Write to this address:
Carl Scott Zimmerman
1424 Wilton Lane
Kirkwood, MO 63122-6943
U. S. A.
or send e-mail to this address:
mailto:csz_stl@swbell.net
or telephone:
+1314 821-8437

The definitions presented here are intended to clarify the usages and classifications found in this book. Other definitions and usages may be found elsewhere in the world of tower bells.

NOUNS

Tower bell - a cup-shaped cast bronze bell, of a size suitable for hanging in a tower; normally thicker at the "sound bow" where the clapper strikes. All bells listed in this book are presumed to fit this definition unless otherwise stated. (Some listed instruments are made of other kinds of bells, or of cup-shaped bells cast from a different material, but used in the same manner as tower bells.) The exception is great Oriental bells, which have a different profile and no sound bow.

All tower bells in listed instruments are presumed to be hung "dead" (i.e., non-swinging) unless otherwise stated. The exception is rings (see below).

Carillon bell - a tower bell which has been tuned so that its various partial tones (hum tone and "overtones") are in harmony with its strike tone according to widely accepted principles of tuning. This book does not attempt to indicate the degree to which any of the listed bells attain or fail such harmony.

Great bell - a tower bell which weighs 4 tonnes or more. (See Supplementary Information on Weights.)

Strike tone - the apparent initial pitch of a bell when struck. It is this pitch which is used throughout this book to describe bell notes.

Site - a single musical instrument made of tower bells, or a collection of such bells in one place.

A "standard" site, which appears in both MIL and CIL in this book, contains at least 8 bells. A "non-standard" site, which can appear only in a MIL section, has less than 8 bells. If a new instrument replaced an older one in the same tower, both are included in the same site rather than being counted separately, even if there was a gap of many years between removal and replacement.

Carillon -
(1) "a musical instrument consisting of at least two octaves of carillon bells arranged in chromatic series and played from a keyboard permitting control of expression through variation of touch." [G.C.N.A.] This implies the use of a baton keyboard as defined below. In this book, the term "traditional carillon" is used when this definition is intended.
(2) a site having at least 23 tower bells in at least two octaves of mostly chromatic series, but falling short of the "traditional" carillon either in the lack of of tuning of the bells or in the type of mechanism (e.g., electric keyboard or automatic-only operation). In this book, all such "non-traditional" instruments are listed in "carillon" subsections.
(3) an automatic mechanical tune-playing mechanism, usually found as auxiliary equipment on a ring (see below) in England; this distinctively British usage of the word is not employed in this book.
(4) a chime (see below) played by a mechanical keyboard; this distinctively French usage of the word is not employed in this book. In this book, all such instruments are listed in "chime" subsections.

Chime -
(1) a musical instrument consisting of at least 8 tower bells arranged in a diatonic (or partially chromatic) series, but with too few bells to be called a carillon, and upon which tunes can be played by some means.
(2) any collection of at least 8 bells which is not a carillon by either definition (1) or definition (2) above. (But note that carillon-sized sites will be summarized as carillons even when listed in "chime" subsections.)

Ring - a set of at least 3 tower bells hung for full-circle ringing in either British ("change-ringing") or Veronese style, normally in diatonic series starting from the tonic note of the major scale in the bass. In the few instances of an added semitone, it is used to provide for a lighter (and smaller) diatonic range for ringing. In this book, rings are listed either with chimes or in a separate sub-section, but are always summarized as chimes; only rings of at least 8 bells are treated as standard sites.
continued...

Peal -

(1) a group of tower bells hung for swinging, each at its own natural pendulum frequency, and therefore at random with respect to each other; swung either by ropes or by individual electric motors.
(2) the performance, by a band of change-ringers, of at least 5000 changes, non-stop; on a ring of 7 or more bells, no two changes can be the same. This definition is not used in this book.
(3) a ring. This definition is fiercely held by some ringers, while being strongly deprecated by others; it is not used in this book.

Zvon - a set of tower bells hung dead with clapper ropes rigged for Russian-style rhythmic ringing; normally few (if any) of the bells fit into any musical scale, and there are large gaps between the pitches of some adjacent bells, particularly the heaviest.

Keyboard - any of several different devices which permit one person to play all the bells in an instrument by hand, with one key per bell. The key size and arrangement vary according to the mechanism used:

- "baton" keyboards, found in all traditional carillons and some chimes, have keys shaped somewhat like batons, have direct mechanical linkages to the clappers of the bells, and are arranged in two rows like the black and white keys of a piano;
- "pumphandle" (American) or "barrow-handle" (French) keyboards are found in chimes with direct mechanical actions much heavier than those of carillons, and the handles are usually in a single straight line;
- electric keyboards are similar to those of an organ, and typically use relays to control hammer solenoids, which may strike the bells on the inside or the outside.

Baton keyboards are played by striking a key gently or with the partially-closed fist; pumphandle keyboards are played by grasping a handle and pushing down with a full arm stroke; and electric keyboards are played with the fingers.

Console (or clavier) - the case or framework which holds a keyboard; sometimes it also contains a pedal keyboard (pedalboard) by which the heaviest bells can be played with the feet as well as (or instead of) the hands. A pedalboard is always present for traditional carillons, sometimes for chimes, and never for non-traditional carillons.

Chimestand -
(1) the console of a mechanical-keyboard chime (either baton or pumphandle);
(2) a wall-mounted rack to which are tied ropes leading to the clappers of a chime; sometimes called a taut-rope clavier. One variety, commonly called an "Ellacombe" stand, is used with rings; it is connected to externally mounted under-hammers so that it can easily lower them all out of the way simultaneously to permit the bells to swing without interference.

VERBS

Chime -
(1) to swing a bell just enough for the clapper to strike, often on only one side of the bell rather than on alternating sides;
(2) to sound one or more bells by any method (coll.);
(3) to emit the sound of a bell (colloquial).

Peal -
(1) to sound the bells of a peal (n.) by swinging;
(2) to sound a bell by any method.

Ring -
(1) to participate in a team of change-ringers;
(2) to sound a bell by any method.

ADJECTIVES

Carillon-sized - having 23 or more tower bells, regardless of any other characteristics.

Chime-sized - having 8 to 22 tower bells, regardless of any other characteristics.

Dead - refers to tower bells which are hung in a fixed (i.e., non-swinging) position. This is typical of carillons, chimes and zvons.

On pages headed "MASTER INFORMATION LISTING" (referenced as MIL) appears plain text descriptive material for all sites.

STANDARD SITES
For standard sites, text is organized in seven categories. Two of these categories will be present for every individual site, while the others are may or may not be; all will normally appear in the same order that they are listed here. Two categories are indicated by position, the rest by keyword.
A. City and country where the instrument is located, in capital letters, on one line (the first line). This site identification is always present, and connects the MIL and the CIL (described on the following pages).

Where a city has more than one tower bell site, the city name is followed by a letter code to distinguish between the sites. This letter code is usually based on the initials of the site name. Institutions with more than one instrument will have a number to distinguish between them. It is possible for a site to have both a letter code and a number.

Some country names include an abbreviation of the geographic section, state or province, to facilitate sorting.
Within each geographic area or subdivision, sites are listed in order by city name. Multiple sites in the same city are listed in order by the letter code and/or numeric code.

Cross-references are provided for variant city names, and sometimes between subdivisions for multi-site cities.
B. Name of the instrument, if specifically named. (There is no keyword associated with this, as there is for the remaining categories.)
C. "Location" of the instrument. This is the complete physical, civil or geographic location of the tower or other installation, and is always present, even if the exact location is unknown. This is not a postal address, although street numbers may be used when cross-street names or similar geographic references are not available. Tower name is included when one exists. If the instrument is not hung in a conventional tower, a descriptive word or phrase may be shown. If the name of the institution has changed during the lifetime of the instrument, any former name(s) of the institution will be shown in parentheses. If the location of the bells is not the same as their original site, then "Former Location" will be shown after the (present) "Location", using the same style.
D. Names of persons who play the instrument and/or who may be contacted about it, if known. Players are listed under the keyword "Carillonist" or "Chimer", depending on the size of the instrument; their formal titles (assigned by the employing institution) are included when known. Other persons or offices are listed under the keyword "Contact".

For both individuals and institutions, categories of membership in the G.C.N.A. (as of Oct. 2006) are indicated by letters in parentheses, as follows:
(A) Associate
(C) Carillonneur
(H) Honorary
(Su) Sustaining
Postal addresses and telephone numbers are included, and for G.C.N.A. members are current as of the above date. (Country names are not included in postal addresses, since they would not be used within that country.) Telephone numbers for individuals are designated "H:" for home and "W:" for work when known, or "C:" for cell; in all other cases they are marked "Ph." or "T:". Facsimile machine numbers are marked "F:". Area codes within the country are shown where known, using either parentheses or "/" according to the custom of the country. Country codes are not shown within the site entries, but are listed at the beginning of each MIL section. E-mail addresses are included where known, designated "E:".
E. "Schedule" of concerts or other regular playing for the public (and practice times for rings), if known.
F. "Remarks" provide additional useful information, especially any explanation for items which belong in the CIL (see next page) but which do not fit the code tables. If the bells are not standard tower bells, their type is shown here.

OTHER SITES

In addition to standard site data (described above, and always matched to corresponding technical site data in the (L), the MIL may contain plain-language information about other sites or points of interest. For example, rings of 5 or 6 bells outside of Great Britain are mentioned, as are bell museums or notable bells which cannot be covered in "Remarks" for a standard site. The text pattern given above for standard sites may be used to the extent convenient, but only a comma (without site code) will be used to separate city and country, and the keywords cited above are not used.

SUMMARY DESCRIPTIONS

On pages headed "SUMMARIES" appear various displays of summary information for the sites in the geographic area covered. The standard summaries are described here.

The simplest summary, which can appear at the end of a MIL or CIL section, is a "count of sites". It shows the numbers of carillon-sized and chime-sized sites which exist now (active) or formerly existed (defunct) in the area being summarized, regardless of the manner of operation.

A "summary by maker" consists of a table showing the number of distinct installations by each maker (named down the left side of the table) for each type of contribution (abbreviated across the top of the table). The bottom row of the table gives the totals for each type of contribution regardless of maker, while the right-most column of the table gives the total number of site contributions for each maker regardless of type. The bottom right figure in the table is the total number of contributions by all makers, which is the same as the number of CIL lines being summarized.

A "plot of site counts" is a scatter diagram showing the numbers of sites having each possible combination of bourdon (or treble) weight code and number of bells (instrument size) Weight codes increase from left to right and are displayed along the top edge of the plot; sizes decrease from top to bottom and are displayed along the right edge of the plot. For areas containing very large instruments, the diagram may be broken into two parts, with the carillon portion on the first page and the chime portion on the second page. The starting weight code may vary between areas, depending on the range of instruments which exist therein. The maximum carillon size and maximum chime size shown also vary as appropriate to each area.

A great variety of other summaries are available from the author on a custom basis at relatively low cost. These include selective and/or sorted listings (MIL and/or CIL) based on any parameter(s) in the CIL, as well as standard summaries applied to any selected set of standard sites.
(Non-standard sites cannot be summarized, since they do not appear in the CIL.)

Examples:

1. CIL of all sites in the southern hemisphere, sorted by year of installation.
2. MIL (Location, Player and Contact only) for all sites in Europe having a traditional keyboard, at least four octaves, where either a player or a contact is known.
3. CIL of all sites for which the maker is known, sorted by maker and year of installation, with bourdon scatter-plot for each maker.
4. MIL (Location only), CIL and site count for all sites with a traditional keyboard in which all notes appear on the manual, the lowest key is B-flat (A\#), and the pedal C\# is present.
5. CIL for all sites which have a bourdon heavier than middle-C and which transpose downward.
6. MIL \&/or CIL for all sites for which there has been a significant change to the information recorded in the database since any specified date. (This methodology was used to prepare the articles which formerly appeared in the Bulletin of the G.C.N.A. from time to time.)

Within the limits of available data, the possibilities are very wide-ranging. Unfortunately no selection is possible based on the content of MIL data--only on the existence or non-existence of the various categories of information.

This section describes (a) the format of the tabular data shown on pages headed "CONDENSED INFORMATION LISTING" (referenced as CIL), column by column, starting from the left side of the CIL, and (b) how to interpret the codes used there.

Location (city \& country) of each site is shown exactly as in the first line of the corresponding entry in the MASTER INFORMATION LISTING (or MIL). For each site, there is one line of print for every distinct contribution to the history of the instrument (such as recasting or expansion), with the newest shown first. On lines after the first, dittos (") are used for the location.

The bells are specified by a bourdon code number, a chromatics letter, and the total number of bells.

1=C	18500 kg	13=C	2300 kg	approx $25=C$	270 kg	ght: $37=$ C	54 kg
$2=C$ \#	16500 kg	$14=C$ \#	1900 kg	$26=C \#$	230 kg	38=C\#	50 kg
$3=$ D	14000 kg	$15=$ D	1600 kg	$27=$ D	190 kg	$39=$ D	46 kg
$4=$ D \#	12000 kg	$16=$ D\#	1300 kg	$28=$ D\#	160 kg	$40=$ D \#	41 kg
$5=\mathrm{E}$	9500 kg	$17=\mathrm{E}$	1100 kg	$29=E$	135 kg	$41=\mathrm{E}$	36 kg
6=F	7700 kg	$18=\mathrm{F}$	900 kg	$30=F$	110 kg	etc	
$7=\mathrm{F}$ \#	6400 kg	19=F\#	770 kg	$31=\mathrm{F}$ \#	100 kg		
8=G	5500 kg	$20=G$	640 kg	$32=\mathrm{G}$	90 kg		
9=G\#	4600 kg	$21=\mathrm{G} \#$	540 kg	$33=\mathrm{G} \#$	80 kg		
$10=\mathrm{A}$	3850 kg	$22=\mathrm{A}$	450 kg	$34=$ A	70 kg		
$11=A \#$	3200 kg	$23=$ A\#	385 kg	$35=$ A	64 kg	99=unk	nown
$12=B$	2700 kg	$24=B$	320 kg	$36=B$	59 kg		

(For other interpretations, see section on weights.)

* NOTE: If the bourdon code number is followed by +, then there is another bell which is heavier (by more than a whole tone) than that identified as the bourdon. This bell
(the sub-bourdon) is included in the total number of bells.
It is possible to have more than one sub-bourdon.
Chromatics letter:
$\mathrm{Z}-\mathrm{W}$ for carillons (and some chimes):
$\mathrm{Z}=$ completely chromatic
$\mathrm{Y}=$ lowest semitone omitted
$\mathrm{X}=$ lowest 2 semitones omitted
$\mathrm{W}=$ lowest 3 semitones omitted
H-M for chimes:
$\mathrm{H}=$ diatonic scale only
I = diatonic scale plus one semitone
$J=$ diatonic scale plus two semitones
(et cetera; see Note on page 3 of this section)
*,- for both carillons and chimes:
* $=$ other arrangement (see Remarks for site in MIL) - = unknown arrangement

Number of bells is self-explanatory.
99 = unknown, but reportedly a carillon.
(Chimes of unknown size are listed as 8 bells, with "*" chromatics letter and a Remark in the MIL for the site.)

The console description section is divided by the virgule (into manual and pedal subsections. In each subsection is shown the lowest and highest note of the respective keyboard. This does not include any extra bass bells (as above), whose keyboard note is shown in parentheses at the left of the appropriate subsection. If the manual keyboard does not include all bells, then the number of notes on the keyboard is shown to the right of the keyboard range. The pedal range is assumed to be at least one octave but not two or more octaves, unless the number of pedal notes is given to the right of the range. All semitones are indicated as sharps (\#), as in the table at left, because there is no "flat" character on standard computer printers. The word "NONE" appears where there is no keyboard (manual and/or pedal, as appropriate). On rings of bells hung primarily for change-ringing, the word "ROPE" appears in place of NONE in the manual subsection.

Examples:

20X23:CC/CC describes a carillon having

- 23 bells, two octaves without the lowest two semitones;
- manual = 2 octaves (23 notes) C to C without low C\# \& D\#;
- pedal = one octave (11 notes) C to C without low C\# \& D\#;
- bourdon note G (code 20), approximately 640 kilograms (about 1400 pounds) weight, connected to keyboard C.
- Thus the instrument transposes a fifth up from concert pitch (7 semitones).

10+Y51:CC49/(G)A\#A24 describes a carillon having

- 51 bells, covering over four octaves, missing one semitone above the bourdon but having also a sub-bourdon;
- manual keyboard of 4 octaves (49 notes), ranging from C to C and fully chromatic;
- pedal keyboard of over 2 octaves (24 notes), covering G-A\#-C-chromatic-to-A;
- specified bourdon note A (code 10), approximately 3850 kilograms (about 8500 pounds) weight, connected to pedal A\# key but not to the manual.
- Thus this carillon transposes one half-tone down from concert pitch (-1 semitone).
- Since the sub-bourdon is connected to pedal note G, it must therefore sound note $F \#$ and weigh about 6400 kilograms (about 14000 pounds).
\qquad
**
In the following paragraphs, the "COLUMN" numbers listed
in the code group headings refer to the numbers in the
sub-heading line on each CIL page. In those columns,
blanks usually represent "unknown" but may indicate
"not applicable"; this is usually obvious from context
* Principal playing mechanism (COLUMN 1):
$B=$ mechanical (baton) keyboard (and pedalboard)
$\mathrm{C}=$ chimestand (pump-handle keyboard; usually no pedals)
c = none (a collection, not an instrument)
$\mathrm{E}=$ electric automatic
$I=$ independent electric keyboard (piano style)
$\mathrm{L}=$ Ellacombe stand, or other taut-rope clavier
$\mathrm{M}=$ mechanical automatic (drum)
$\mathrm{n}=$ no current workable playing mechanism (bells remain)
$\mathrm{N}=$ none (instrument no longer exists)
O = electric operation from organ keyboard
R = rope and wheel (full-circle, for change-ringing)
$\mathrm{S}=$ swung individually by electric motor
$\mathrm{V}=$ rope and wheel (full-circle, Veronese system
$\mathrm{W}=$ rope and wheel (swing-chiming only)
* $=$ other (see Remarks for site in MIL)
- = not applicable (e.g., partial phase of installation)
(See also COLUMN 10.)
Bellfounders (COLUMN 2):
A $=$ van Aerschodt
$B=$ Bollée
$\mathrm{B}=$ Bollée $\quad \mathrm{b}=$ Bigelow
$C=$ Schilling (Apolda \& Heidelberg)
$C=$ Causard
$D=\operatorname{van}$ den Gheyn $\quad d=$ Deagan (tubular)
$\mathrm{E}=$ Eijsbouts
$\mathrm{F}=$ Petit and Fritsen
G = Gillett and Johnston
$\begin{array}{ll}\mathrm{H}=\text { Hemony } & \mathrm{h}=\text { Hooper/Blake }\end{array}$
I = Michiels
j = Jones
M = Meneely (West Troy/Watervliet)
$\mathrm{m}=$ Meneely (Troy)
$\mathrm{N}=$ McShane
$\begin{array}{ll}O=\text { Olsen (Nauen) } & O=\text { Cornille-Havard } \\ P=\text { Paccard } & \mathrm{P}=\text { Perner }\end{array}$
$R=$ Pin $=$ Perner
S = Sergeys r = Rüetschi
$\mathrm{T}=$ Taylor
u = U.S.Tubular
$\mathrm{V}=$ van Bergen (Heiligerlee \& Greenwood)
$\mathrm{W}=$ Whitechapel (\& its predecessors)
$\mathrm{w}=$ Warner
$\mathrm{Y}=$ Wauthy
$\begin{array}{ll}X=\text { Michaux } & Y=\text { Wauthy } \\ Z=\text { Bergholtz } & z=\text { Vanduzen }\end{array}$
\$ = Bochumer Stahlverein (steel bells)
+ = multiple makers, no one of which predominates (most often used for collections)

COLUMN 2 continues

枕
...COLUMN 2 continues:
\% = Porzeleinfabrik Meissen (porcelain bells)

* $=$ other conventional (see Remarks for site in MIL)
= other/unknown tubular (see Remarks for site in MIL)
NOTE: In the last section of this book may be found an expanded list of bellfounders giving full names, locations, periods of work, and other information.

Extent of founder's contribution (COLUMN 3):
$\mathrm{C}=$ complete instrument (possibly in several installments) $\mathrm{E}=$ extended to present range
$F=$ foundation of later-extended instrument
$I=$ intermediate extension
$\mathrm{K}=$ new keyboard of different range
$\mathrm{R}=$ recast (or replaced) without extending range
$\mathrm{T}=$ retuned (without recasting)
$\mathrm{x}=$ removal of bells previously in use (after * in Column 2; used when an instrument is downgraded, not improved)

* = a mixture of founders, no one of which made a complete instrument at this site; see Remarks for site in MIL.
NOTE: Codes E and I may include recasting of older bells. Then the total added and recast will be shown in
Column 4 (see below), and will be greater than the increase in the size of the instrument.

Remainder (COLUMN 4):
Number of bells by this maker remaining or included
$-U=$ unknown number removed or excluded
-\# = number excluded (usually after C in Column 3)

Year installed (COLUMN 5): self-explanatory
(NOTE: If the year the bells were cast is not the same as the year of installation, or the preceding year, then a Remark appears in the M.I.L.)

Practice console (COLUMN 6):
D = different from carillon console
$I=$ identical to carillon console
$\mathrm{N}=$ none
S = simulator for one or more bells of a ring
$Y=y e s$, but type is unknown

Source and date of latest information (COLUMN 7):
Last 2 digits of year, followed by a letter -
b $=$ British Carillon Society Newsletter
B = "Bulletin of the G.C.N.A."
$C=$ personal communication to the author
$\mathrm{D}=$ "Directory" of North American carillons, G.C.N.A.
F = Frank Della Penna
$\mathrm{H}=$ published lists of Leen 't Hart
COLUMN 7 continues
\qquad

* ...COLUMN 7 continues:
$J=$ Rinus de Jong
K = "Klok en Klepel" (magazine of the N.K.V.)
k = Keating, "Bells in Australia", 1979
L = Lefevere, "Bells over Belgium" (3d ed), 1953
$\mathrm{M}=$ manufacturer (bellfounder or installer)
* $\quad \mathrm{N}=$ "The Clapper" (NAGCR newsletter; also annual report)
* $\quad 0=$ Peace Tower Summer Program booklet, Ottawa
$O=$ Peace Tower Summer Program booklet,
P $=$ Price, "Campanology Europe, 1945-47"
$\mathrm{P}=$ Price, "Campanology Europe, 1945-47"
$\mathrm{Q}=$ questionnaire of the GCNA Committee on Tower and
Carillon Statistics
$\mathrm{R}=$ newsletter of the GCNA
(originally "Randschriften", now "Carillon News")
$\mathrm{T}=$ "De Zingende Toren van Nederland"
$\mathrm{V}=$ Dove, "A Bellringer's Guide..."
$\mathrm{V}=$ Dove, "A Bellringer's Guide..."
(8th ed., 1994; 7th ed., 1988; 6th ed., 1982)
W = "The Ringing World" (weekly news magazine)
Z = personal visit by the author
Heights above ground, in meters (COLUMNS 8):
a...base of console (or ringing room);
 * if not in tower--see REMARKS for site in MIL
0 indicates ground floor
b...lowest level of bells
c....highest level of bells
Percent of bellchamber walls open (COLUMN 9):
99 = exposed frame, no walls
 * = variable sound control
Additional playing mechanisms (COLUMN 10):
Codes as for COLUMN 1, plus the following---

$\mathrm{F}=$ flywheel (Spanish sty
$\mathrm{H}=$ hour struck by clock
$Q=$ quarters and hour struck by clock
Q $=$ quarters and hour struck
$\mathrm{T}=$ tolling hammer with rope
$\mathrm{T}=$ tolling hammer with rope m (before another code) $=$ that mechanism is or was
installed, but is not operable now (notice lower case)
a number after a code $=$ the number of bells thus sounded
Transposition (COLUMN 11):
$n n=$ transpose upward "nn" halftones (light bells)
$\begin{aligned} 0 & =\text { in concert pitch } \\ n n & =\text { transpose downwa }\end{aligned}$
-nn = transpose downward "nn" halftones (heavy bells)
12 = one octave above concert pitch
$24=$ two octaves above concert pitch
$9 x$ (or blank) $=$ indeterminate for some reason

NOTE: For chromatics letters indicating added semitones in chimes (I,J,K), the placement of such notes is indicated in the MIL Remarks block for the site when known. It may be shown as a specific note, or as an interval relative to the bass (for chimes) or treble (for rings). Thus an F\# added to a C scale would be the sharp 4th of a chime (of any size) but the flat 4 th of a ring of 8 or the flat 6 th of a ring of 10 .
continued.
Latitude (Lat) and longitude (Long) are given in degrees and minutes, east longitude and south latitude negative. These values often represent only the general location of the city and not the exact location of the instrument.
installation, etc.) and to distinguish collections better.

EXPLANATION OF "BOURDON CODE NUMBER"

A bourdon code number is used to give a general indication of the weight of a tower bell instrument by reflecting the approximate pitch or note of the heaviest bell in it.

The code table in the left column of page 1 of the Code Interpretation section shows the relationship between code numbers and notes using approximate bell weights in kilograms. The following tables show other ways of looking at the bourdon code numbers.

Bourdon code number $1=c$	versus internat $13=c^{\prime}$	l pitch notat $25=c "$
2=c\#/d-flat	14=c\#'/d-flat'	26=c\#"/d-flat"
$3=\mathrm{d}$	$15={ }^{\prime}$ '	$27=$ d"
4=d\#/e-flat	16=d\#'/e-flat'	28=d\#"/e-flat"
$5=e$	$17={ }^{\prime}$	29=e"
$6=\mathrm{f}$	18=f'	$30=$ ¢"
7=f\#/g-flat	19=f\#'/g-flat'	31=f\#"/g-flat"
$8=9$	$20=g^{\prime}$	$32=9 "$
9=g\#/a-flat	21=g\#'/a-flat'	33=g\#"/a-flat"
$10=a$	$22=a '$	$34=a "$
11=a\#/b-flat	23=a\#'/b-flat'	
$12=\mathrm{b}$	$24={ }^{\prime}$	etc.

Bourdon code number versus European pitch notation:
$1=\mathrm{c} 0$ number
$2=\operatorname{cis} 0 / \operatorname{des} 0$
$3=\mathrm{do}$
$4=$ dis0/es0
$5=\mathrm{e} 0$
$6=\mathrm{f} 0$
$7=$ fis0/ges0
$8=g 0$
$9=$ gis0/as0
9= gis0/as0
$10=\mathrm{aO}$
$11=$ ais0/bes0
$12=\mathrm{b} 0$
Bourdon code number
$1=\mathrm{C}$
$1=\mathrm{C} 42000 \mathrm{lb} \quad 13=\mathrm{C} \quad 5000 \mathrm{lb} \quad 1 \mathrm{~b} \quad 25=\mathrm{C} \quad 600 \mathrm{lb}$
$\begin{array}{llllllll}1=\mathrm{C} & 42000 & \mathrm{lb} & 13=\mathrm{C} & 5000 & \mathrm{lb} & 25=\mathrm{C} & 600 \\ 2=\mathrm{CH} & 36000 & \mathrm{lb} \\ \mathrm{lb} & 14=\mathrm{C} \# & 4200 & \mathrm{lb} & 26=\mathrm{C} \# & 500 & \mathrm{lb}\end{array}$
$3=D \quad 31000$ lb
4=D\# 26000 lb
$5=\mathrm{E} \quad 21000 \mathrm{lb}$
6=F 17000 lb
7=F\# 14000 lb
$8=\mathrm{G} \quad 12000 \mathrm{lb}$
9=G\# 10000 lb
$10=\mathrm{A} \quad 8500 \mathrm{lb}$
$10=\mathrm{A} \quad 8500 \mathrm{lb}$
$\begin{array}{lll}11=\mathrm{A} \# & 7000 \mathrm{lb} \\ 12=\mathrm{B} & 5900 \mathrm{lb}\end{array}$
$13=\mathrm{c} 1$
$14=$ cis1/des1
$15=\mathrm{d} 1$
$16=$ dis1/es1
$17=$ e1
$18=\mathrm{f1}$
$19=\mathrm{fis} 1 / \mathrm{ges} 1$
$20=91$
$21=g i s 1 / a s 1$
21= gisl/as
$22=\mathrm{a} 1$
$23=$ ais1/bes 1
$23=$ ais1/bes1
$24=\mathrm{b} 1$
$25=c 2$
$26=$ cis2/des2
$27=\mathrm{d} 2$
28= dis2/es2
$29=$ e2
$30=\mathrm{f} 2$
31= fis2/ges2
$32=92$
$33=$ gis2/as2
$34=\quad \mathrm{a} 2$
$34=a 2$
etc.
$15=\mathrm{D} \quad 3500 \mathrm{lb} \quad 27=\mathrm{D} \quad 420 \mathrm{lb}$ $16=\mathrm{D} \# 2900 \mathrm{lb} \quad 28=\mathrm{D} \# 350 \mathrm{lb}$ $17=\mathrm{E} \quad 2400 \mathrm{lb} \quad 29=\mathrm{E} \quad 300 \mathrm{lb}$ $18=\mathrm{F} \quad 2000 \mathrm{lb} \quad 30=\mathrm{F} \quad 250 \mathrm{lb}$ 19=F\# 1700 lb $31=\mathrm{F} \# 225$ lb $20=\mathrm{G} \quad 1400 \mathrm{lb} \quad 32=\mathrm{G} \quad 200 \mathrm{lb}$ $21=\mathrm{G} \# 1200 \mathrm{lb} \quad 33=\mathrm{G} \# 175 \mathrm{lb}$ $22=\mathrm{A} \quad 1000 \mathrm{lb} \quad 34=\mathrm{A} \quad 155 \mathrm{lb}$ 23=A\# 850 1b
$\begin{array}{lll}23=A \# & 850 & \text { lb } \\ 24=B & 700 & \text { lb }\end{array}$

This method of numbering the bell notes permits a two-digit number to reflect the entire range of practical tower bell weights. Using any other method would take 3 to 5 digits or characters.

A difference of 12 in code numbers always reflects a change of one octave in pitch. Code "13" is "middle C", so a tower bell instrument which has a C key connected to a bell of this pitch and weight is in concert pitch.

Code number "1" corresponds to the bourdon of the carillon in Riverside Church, New York--the heaviest bell now in any carillon in the world, and unlikely to be surpassed. The few heavier tower bells which exist are either isolated (as in Asian temples) or are used in ways which do not correspond to the musical scale (as in Russian zvons). Isolated bells of more than a few tons are listed in plain language in the MIL under "Great Bells", and the enormous bells in a few zvons are handled by the "+" mark described on page 1 of the Code Interpretation section.

On page 2 of this section is a diagram showing graphically some of the relationships which have been presented in tables and plain language above.

The correspondence between weight and pitch is not exact. The weights of bass bells of the same pitch can vary by as much as 10%, and trebles by as much as 50%, depending on the profiles used by the bellfounder. In this book, pitch is more important than exact weight in determining the bourdon code number to use in the CIL.

Weights given in the last table in the opposite column and in the similar table on page 1 of the Code Interpretation section are NOT equivalent, and should not be treated as such. They are simply round numbers chosen to show a general characteristic. For conversions among weight systems, see the tables and procedures on pages $3-7$ of this section. They show the relationships among the metric (SI), American and British systems to varying degrees of accuracy.

The difference between accuracy and precision often causes confusion in the reporting of bell weights. Accuracy refers to the number of significant digits in a number; precision refers to the value of the least digit used. If a weight is reported as 40,000 lbs, the precision is 1 pound (the unit of the rightmost zero), but the accuracy may be only 1 ton. If that is the case, then it is less misleading to report the weight as 20 short tons. When integer fractions are used (such as 1/2) there is often less confusion between accuracy and precision.

For further information, see under "Weights and Measures" in the Encyclopedia Britannica.

Diagram of the relationship among different methods of indicating bell size/weight/pitch

Ton weights in the lower octave are in short tons.

Frequencies shown represent the "strike tone" of the bell (see Glossary). A lower frequency, the "hum tone", develops later.

The octave numbering system used above corresponds to the range of tuned tower bells, and differs slightly from other commonly used systems. For example, piano tuners designate the top C of a piano as "c8". Some piano players and composers use a "small/great" system in which the top note of a piano is c5, middle C is cl, next lower is "small c", then "great C", then "contra C", down to "sub-contra A".

The code numbering scheme is a free adaptation of one originally developed by carillon architect Frederick C. Mayer.
That may be found in "Carillon Music \& Singing Towers of the Old World and the New," by William Gorham Rice, Revised edition, following page 278c. The principal difference lies in the separation of two items of information which Mayer combined into one, namely the bourdon pitch and the number of missing bass semitones.

* The three tables on the following page relate weights in
kilograms (abbreviated "kg") and those in pounds (abbreviated "lb"). They are designed mainly to convert kilograms to pounds, but can be used for the opposite conversion also.
o To convert from kilograms to pounds, first drop (or round) any fractional part. Then separate the value into thousands, hundreds, tens and units portions. (Example: $815=800+10+5$)

Next, read down the left column to find the row for the most significant value. This may be in the first, second or third table, depending on the magnitude. (Using the example above, 800 is the 8 th row of the second table.)

Then read across the top row of that table to find the column for the next lower value of kgs.
(Using the same example, 10 heads the second column of the second table.)

At the intersection of this column and row find the net lbs equivalent to the total number of kgs .
(In the example, this is 1785.7 lb for $810 \mathrm{kg}$.)
If you began in the first table, you are now done.
If you began in the second table, and you had a non-zero units value, then use row 0 of the first table to find its equivalent. Add the two results together.
(In the example, the leftover units are 5; in the first table, row 0 column 5 yields 11.0; adding the two values $1785.7+11.0=1796.7 \mathrm{lb}$. You might wish to round this to 1797 pounds; for some purposes you might instead choose to use either 1795 or 1800 pounds.)

If you began in the third table, you will have both tens and units values remaining. If either is non-zero, then use these two in the first table in a similar way
(Example: $\quad 2815=2000+800+10+5$;
from the third table, 2000 and 800 yield 6173;
from the first table, 10 and 5 yield 33.1 ;
then $6173+33=6206$, so $2815 \mathrm{~kg}=6206 \mathrm{lb}$.

- To convert kilograms to pounds mentally, multiply by 2 and add 10\%. These two steps can be done in either order, and are easiest to do with round numbers. Accuracy is between two and three digits.
(Example: for 300 kg , $2 \times 300=600$; 10\% of 600 is 60; $600+60=660 ;$ so $300 \mathrm{~kg}=660^{\prime} \mathrm{lb}$.)
- If using a calculator, use 2.20462 as the multiplier to preserve up to 6 digits of accuracy.

Abbreviation style: Here "s" is used with "kg" or "lb" only for plurals in plain text, not with numeric values.

- To convert from pounds to kilograms, look in the table bodies for your starting number, or for a pair of numbers which bracket your starting number. Notice that bers which bracket your starting number. Notice th
numbers in the tables increase from left to right numbers in the tables increase from left on row, and that the right end of one row is across each row, and that the right end
less than the left end of the next one.
(Example: 4700 pounds lies between 4630 and 4850 in the second row of the third table.)

If you are in the first table, pick the value which is closest to your starting value; if you are in the second or third table, pick the largest number which is below the starting value.
(Example, continued: pick 4630)
Add together the kg values at the left end of the row and the top of the column for the number you found. (Example, continued: $2000+100=2100$)

If you started in the first table, you are finished. If you started in the second or third table, then subtract the value you found in the table from your starting value, use the same process to look up the remainder in the first table, and add the results together.
(Example, continued: $4700-4630=70$, which lies between 68.3 and 70.5 in the fourth row of the first table. Since 70 is closer to 70.5 than to 68.3, pick 70.5; then the row and column values are 30 and 2 $30+2=32 ; 2100+32=2132 ; \quad$ so $4700 \mathrm{lb}=2132 \mathrm{~kg}$, which could be rounded to 2130 kg .)

NOTE: Tables are accurate and precise to the last digit shown. Accuracy of your result will be no greater than the accuracy of the figure with which you began.

- To convert pounds to kilograms mentally, divide by 2, subtract 10\%, and add back 1\%.
Accuracy is between two and three digits.
(Example: given $1800 \mathrm{lb}, 1800$? $2=900$;
$900-90+9=819$; so 1800 lbs $=819 \mathrm{~kg}$, which could be rounded to $820 \mathrm{kg}$. .)
- If using a calculator, use 0.453592 as the multiplier to preserve up to 6 digits of accuracy.

The tables in the opposite column and on the following page relate British and American methods of counting weight. In both methods, the unit of weight is the avoirdupois pound, which is abbreviated "lb" (singular) or "lbs" (plural). The difference between the methods lies in the way that pounds are counted.

The British method, which is the standard used for changeringing bells, is based on the [long] hundredweight, which is 112 lbs. It is abbreviated "cwt" whether singular or plural.

- One fourth of a hundredweight is a quarter. It is abbreviated "qtr" or "qr" (singular) or "qrs" (plural).
- Twenty cwt is a ton (not abbreviated).
(Another British counter, the stone, is one-eighth cwt, or 14 lbs; it is commonly used for weighing people, but not bells.)

When any one of these counters is used by itself, its abbreviation is written with the number (for example, 7 cwt).
When a weight is expressed to the nearest qtr, the standard When a weight is expressed to the nearest qtr, the standa
fractions are used. (Examples: 2 i cwt; 3 tons $7 i$ cwt). fractions are used. (Examples: $2 \dot{i}$ cwt; 3 tons 7 i cwt).
However, when a weight is expressed to the nearest pound, no However, when a weight is expressed to the nearest pound, no
abbreviations are used; instead, the numbers are separated by dashes in the order cwt-qtr-lbs or tons-cwt-qtr-lbs. For example, $17-3-12$ represents 2000 lbs.

Using the table at right:

- To convert from British to American, read down the left column to find the row for the number of cwt, then read across the top row to find the column for the number of qtrs. At the intersection of this column and row find the net pounds equivalent to cwt-qtr; then add the
remaining lbs to find find the total.
For example, a British weight of $1-2-3$ is equal to an American weight of 171 pounds.
(In row 1, column 2 yields 168; add 3 to obtain 171.)
- To convert from American to British, search the body of the table for the largest number which does not exceed the American weight given. The number at the left end of that row is the cwts, and the number at the top of that column is the qtrs. The difference between the number given and the number found is the lbs.

For example, an American weight of 123 lbs is 1-0-11 in the British method of counting.
(The closest number in the table body is 112 , which is in row 1 , column 0; then 123 minus 112 equals 11.)

British (cwt-qtr) to net pounds (up to 2 tons)

For weights exceeding this table, see next page.

```
British Imperial units:
    ton = 20 cwt (2240 lb)
    cwt = hundredweight (112 lb)
    qtr = quarter (28 lb)
    lbs = pounds
```

|

The tables in the opposite column relate British and metric methods of measuring weight, both of which have been introduced above in relationship to pounds avoirdupois.

- To convert from British to metric, first read down the left column of the large table to find the row for the number of cwts, then read across the top row of the same table to find the column for the number of qtrs. At the intersection of this row and column find the kgs equivakgs equivalent to the lbs. Finally, add the two results together.

Example: given a British weight of 1-2-3
in row 1, column 2 of the large table find 76.2;
in the small table find 1.4 opposite 3 lb ;
$76.2+1.4=77.6 \mathrm{~kg}$ total. This would probably be rounded to 78 kg .

- To convert from metric to British, search the body of the large table for the largest number which does not exceed the metric weight given. The number at the left end of that row is the cwts, and the number at the top of that column is the qtrs. Subtract the number found in the table from the starting number; then find this remainder (or nearest value) in the second column of the small table and read the lbs equivalent from the first column of that table.

Example: given a metric weight of 255 kg ,
in row 5 of the large table, 255 lies between 254.0 and 266.7 ; row 5 represents 5 cwt, and column 0 represents 0 qtr.
Subtracting 254.0 from 255 gives 1.0; in the small table, this is closer to 0.9 than to 1.4 , so use 2 lb . Then $255 \mathrm{~kg}=5-0-2$ (or 5 cwt 2 lbs) in British terminology.

British (cwt-qtr-lbs) to kilograms (kgs)

\qrs:	0	1	2	3	\ kg	
cwt \}				======	lb	
0	0.0	12.7	25.4	38.1	0	0.0
1	50.8	63.5	76.2	88.9	1	0.5
2	101.6	114.3	127.0	139.7	2	0.9
3	152.4	165.1	177.8	190.5	3	1.4
4	203.2	215.9	228.6	241.3	4	1.8
5	254.0	266.7	279.4	292.1	5	2.3
6	304.8	317.5	330.2	342.9	6	2.7
7	355.6	368.3	381.0	393.7	7	3.2
8	406.4	419.1	431.8	444.5	8	3.6
9	457.2	469.9	482.6	495.3	9	4.1
10	508.0	520.7	533.4	546.1	10	4.5
11	558.8	571.5	584.2	596.9	11	5.0
12	609.6	622.3	635.0	647.7	12	5.5
13	660.4	673.1	685.8	698.5	13	5.9
14	711.2	723.9	736.6	749.3	14	6.4
15	762.0	774.7	787.4	800.1	15	6.8
16	812.8	825.5	838.2	850.9	16	7.3
17	863.6	876.3	889.0	901.7	17	7.7
18	914.4	927.1	939.8	952.5	18	8.2
19	965.2	977.9	990.6	1003.3	19	8.6
20	1016.0	1028.7	1041.4	1054.1	20	9.1
21	1066.8	1079.5	1092.2	1105.0	21	9.5
22	1117.7	1130.4	1143.1	1155.8	22	10.0
23	1168.5	1181.2	1193.9	1206.6	23	10.5
24	1219.3	1232.0	1244.7	1257.4	24	10.9
25	1270.1	1282.8	1295.5	1308.2	25	11.4
26	1320.9	1333.6	1346.3	1359.0	26	11.8
27	1371.7	1384.4	1397.1	1409.8	27	12.3
28	1422.5	1435.2	1447.9	1460.6	28	12.7
29	1473.3	1486.0	1498.7	1511.4		
30	1524.1	1536.8	1549.5	1562.2		
31	1574.9	1587.6	1600.3	1613.0		
32	1625.7	1638.4	1651.1	1663.8		
33	1676.5	1689.2	1701.9	1714.6		
34	1727.3	1740.0	1752.7	1765.4		
35	1778.1	1790.8	1803.5	1816.2		
36	1828.9	1841.6	1854.3	1867.0		
37	1879.7	1892.4	1905.1	1917.8		
38	1930.5	1943.2	1955.9	1968.6		
39	1981.3	1994.0	2006.7	2019.4		
40	2032.1	2044.8	2057.5	2070.2		

For weights exceeding this table, first convert to total pounds using the procedure on page 5 of this section; then convert pounds to kilograms using the procedure on page 3 of this section.

